
CPS311 Lecture: Introduction to the MIPS Architecture and Assembly 
Language

Last revised August 5, 2015

Objectives:

1. To introduce the MIPS architecture
2. To introduce MIPS R-Type, immediate, and load-store instructions

 Materials: 

1. MIPS ISA Handout (will have been distributed before class)
2. Connection to MIPS to demo gcc

I. Introduction 

A. For the next few weeks, we will be studying the Machine Language 
level of system description.  At this level, a computer system can be 
viewed as a memory, a set of registers, and a set of instructions for 
manipulating the information in the memory and registers.

1. Programs written at a higher level of system description (e.g. in a 
language such as C) are translated into primitive operations at this 
level.

2. This level is, in turn, implemented directly by hardware - i.e. the 
registers are arrays of flip-flops, addition is performed by full 
adders, etc.

3. The architectural description of a machine at this level is often 
referred to an Instruction Set Architecture (ISA).

B. For this portion of the course, we will be focussing on a particular 
instruction set architecture (ISA) known  as MIPS.
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1. It is not the goal of these lectures that you should become 
proficient MIPS assembly or machine language programmers.

2. Rather, we want to use MIPS as an example of a typical instruction 
set architecture.

a) The MIPS architecture belongs to the general category of 
Reduced Instruction Set Computer (RISC) architectures.  

(1)As such, it is easier to learn than a Complex Instruction Set 
Computer (CISC) architecture such as the IA32 architecture 
used by the Pentium. 

(2)Although the x86 architecture (and its 64-bit extension) that 
is used in virtually all laptops is not a RISC architecture,  the 
current practice is to implement this architecture on top of a 
RISC core (there is a RISC inside the CISC) - for example, 
this is how newer Pentiums are actually being implemented.

b) When we get to the actual details of implementing a CPU 
(computer organization), the implementation of a RISC 
architecture like MIPS is more comprehensible - and, indeed, 
we will discuss the implementation of the MIPS architecture in 
later lectures.

3. It is also the case that once you have become familiar with one 
instruction set architecture, it is much easier to learn another.  
(Once you learn to drive a Ford, driving a Chevy is easy.)

C. A bit of history

1. The MIPS architecture grows out of an early 1980's research 
project at Stanford University.  
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2. In 1984, MIPS computer corporation was founded to 
commercialize this research.  However, CPU chips based on the 
MIPS architecture have been produced by a number of different 
companies, including LSI Logic, Toshiba, Philips, NEC, IDT, and 
NKK.

3. The MIPS architecture has passed through a series of evolutions, 
known as MIPS I, MIPS II, MIPS III, and MIPS IV.

 
a) Each successive ISA is a superset of the preceding one - so  

anything found in MIPS I is also found in MIPS II, III, and IV, etc.

b) The MIPS I and II ISA's were 32 bit architectures.  MIPS III 
added 64 bit capabilities - but with the core 32 bit architecture 
as a subset.

c) We will confine our coverage to the core MIPS I architecture.

4. Note that the MIPS architecture itself is older than you are! That 
may seem surprising, given the rapid progress in the field of  CPU 
performance.  However, the changes have mostly come at the 
implementation level, not the architectural level.

(Compare: Today's cars are much safer, longer lasting, and  
environmentally friendly than those of decades ago - however, the 
basic architecture of gasoline engine, four wheels, a steering 
wheel,  gas, brake and (optionally) clutch pedals has remained 
unchanged for  decades.)

D. Note that we are going to study the MIPS ARCHITECTURE.  As is 
true of most successful architectures, There have been many  this 
architecture - e.g.  

1. R2000 - the original implementation, and the one whose 
implementation we will discuss later in the course
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2. R3000, R3051

3. MIPS R6000 (implemented MIPS II ISA) *

4. MIPS R4000, Vr4300, R4400, R4600 (implemented MIPS III ISA)

* The R6000 preceded the R4000 because the R4000 took longer 
than planned to develop, but was quickly superseded by the R4000

5. MIPS R5000 (implemented MIPS IV ISA)

6. MIPS R10000

7. Various specialized implementations used in embedded systems 
(printers, routers, game consoles)

E. Note: the system we will use in lab uses the R5000 implementation.

II. Basic MIPS-I Architecture

A. Although MIPS implementations differ in internal organization, they 
can all be regarded as having the same basic architecture.

(Go over diagram in handout.  Note: IO Devices will be discussed 
later in the course and vary widely from installation to installation.)

B. Discuss handout material on CPU registers

1. The CPU has 35 user-visible REGISTERS (plus several typically 
used only by the operating system).  Each register holds one word 
(32 bits).

2. Registers can be thought of as a very special kind of memory cell.
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a) Registers are part of the CPU, mot the memory system.

b) A register is referred to by name (e.g. $31, pc) instead of by 
address.

c) Information in a register can be accessed in much less than one 
clock cycle (e.g. much less than a nanoseconds on a 1GHz + 
machines). In contrast, information in memory requires 10's of 
ns to access.

3. Discuss

a) 32 general registers

b) pc

c) hi and lo

d) Note that - in contrast to the VonNeumann machine,  there is no 
IR.  That's because MIPS uses a pipelined implementation in 
which several instructions are at different stages of processing  
at any one time.  There are several "IR's" that are part of the 
pipeline registers, as we shall see later.

C. Discuss Handout material on Memory

1. The amount of physical memory installed will vary from system to  
system  Special hardware and software gives the user the appearance 
of a  much larger VIRTUAL MEMORY by using disk as an 
extension of main  memory to hold regions not currently being used.

2. Addresses whose leftmost bit is 1 (0x80000000 to 0xffffffff) are 
handled in special ways by the memory management hardware, 
and so are not used by ordinary user programs (though they are 
used by the  operating system). 
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3. Individual regions of memory may be PROTECTED, so that a user 
program may be prohibited from writing it or reading or writing it.  (This 
allows the system to protect multiple users of the same system from one 
another, and to protect itself from them.)

 (Memory management and protection are topics we will consider toward 
the end of the course.  They are only an issue when writing user programs 
if one accidentally or intentionally uses an invalid address.  The familiar 
"segmentation fault - core dumped" that you may have gotten due to 
pointer error in a C++ program is the operating system's typical response 
to attempted access to illegal memory addresses.)

4. Thus, regardless of the mount of physical memory actually 
installed, the application program view of memory is 2 Gigabytes, 
with addresses  ranging from 00000000 to 0x7fffffff (on a 32-bit 
version of MIPS). 

III.Basic MIPS R-Type Instructions

A. The Basic Execution Cycle

1. The CPU fetches and executes instructions from memory. 

a) Each instruction is one word (32 bits) long.

b) The leftmost six bits of each instruction are the OPCODE 
which specifies what operation is to be performed.  (Some 
instructions use additional bits elsewhere in the instruction to 
further specify the operation.)

c) The remainder of the instruction specifies the OPERANDS - 
what values the operation is to be performed upon.
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d) The precise format of the rest of the instruction (what bits have 
what meaning) follows one of three patterns, depending on the  
opcode.  (We will briefly introduce two today.)

2.  Like all Von Neumann machines, the CPU repeatedly executes the 
following "fetch - execute" cycle:

while not halted
{
	

 fetch a word from the memory location specified by pc
	

 update pc (pc <- pc + 4 since instructions are one word long)
	

 decode instruction
	

 execute instruction
}

3. MIPS instructions have one of three formats:

a) R-Type

b)  I-Type

c) J-Type

B. The add instruction

1. The MIPS add instruction can be used to add the contents of two 
SOURCE registers, placing the result in some DESTINATION 
register (which can be the same as one of the source registers, or 
different.)
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2. It looks like this (all values given in decimal)

# of bits	

 6	

 5	

 5	

 5	

 5 	

 6 

 field	

 op 	

 rs 	

 rt	

 rd	

 shamt	

 funct

 contents   op = 0	

 1st	

 2nd	

 dest	

 (not	

 arith/logical
	

 for	

 source	

 source	

 reg	

 used -	

 function =
	

 most R	

 reg	

 reg                   	

 0)	

 32 for add
	

 type
	

 instructions

This general format of instruction is called R format (where R stands for 
"register", because all operands are in registers)

3. Thus, the instruction to add the contents of register 8 and register 9. 
placing the results in register 10, would look like this:

bits	

 31..26	

 25..21	

 20..16	

 15..11	

 10..6	

 5..0
	

 (6)	

 (5)	

 (5)	

 (5)	

 (5)	

 (6)

field
values
(decimal)	

0	

 8	

 9	

 10	

 0	

 32
(binary)	

 000000	

 01000	

 01001	

 01010	

 00000	

 1000000

= 0000 0001 0000 1001 0101 0000 0010 0000 
hexadecimal    =  0x01095020

4. Clearly, writing instructions in machine language is an error-prone 
and tedious process.  For this reason, we normally use assembly 
language as a symbolic representation, relying on a program (the 
assembler) to translate into machine language for us.

Ex: The above instruction in assembly language

add $10, $8, $9 - corresponds to HLL $10 = $8 + $9
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Three things to note:

a) The symbolic op code (add) represents values both in the op and 
the function fields

b) Order of specifying registers

(1)Machine language: source1, source2, destination

(2)Assembly language: destination, source1, source2

(corresponds to the way we would write a HLL assignment  
statement: destination = source1 + source2.  The order of 
writing is not an issue, since we use a program to translate the 
symbolic form to machine language.)

(3)The shamt field that is not used by add (and many other   
instructions) is not specified at all in the assembly language 
form.

C. Other R-Type instructions

1. Go over list in handout.

a) Discuss distinction between add/sub and addu/subu

b) Note two kinds of shift instructions (fixed amount and variable 
amount)

c) Note two kinds of right shift instruction (arithmetic, logical)

d) We will see uses for slt, sltu later.

2. You might think that MIPS would have multiply and divide instructions 
that look similar to add and subtract - but this is not the case.
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a) Multiply and divide are much more complex operations.  An add or 
subtract can be done in one machine cycle, but a multiply or divide 
will take many cycles. 

b) For this reason, early RISC architectures did not include multiply 
and divide instructions - they had to be synthesized by a software 
subroutine when needed.

c) MIPS does have hardware multiply and divide instructions, but 
they differ from most other R-type instructions in two ways

(1)They do not specify a destination register - the result of 
multiplication is placed as a double-length value in hi and lo; and 
division produces two results - quotient in lo, remainder in hi.

(2)These instructions START the execution of the operation,  
which is performed by the multiply divide unit in parallel with 
further ordinary computation.

The result is fetched from hi and lo by mfhi, mflo - which are 
interlocked - i.e. further execution of instructions by the CPU is 
suspended until the needed value is available.

IV.Working with Constants

A. The add immediate instruction.

1. Many times, it is necessary to work with integer constants in a 
program - e.g. C/C++/Java  i ++  translates into "add 1 to i"

2. One way to handle this would be to store the value 1 in a known 
location in memory, and then treat it like a memory variable when  its 
value is needed.
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3. However, because constants are needed so often, MIPS provides a 
special form of the add instruction for dealing with them, called add 
immediate.  These instructions are called I-Format instructions, 
because the instruction contains an IMMEDIATE VALUE as part of 
the instruction.

# of bits	

 6	

 5	

 5 	

 16
field	

 op 	

 rs 	

 rt 	

 immediate value
contents  op =	

 source	

 destination	

 value to add
	

 8 for addi	

 reg 	

 reg 	

 (two's 
	

 	

 	

 	

 complement
	

 	

 	

 	

 signed number)

4. Example: to add 1 to register 8, and put the result in register 9, we 
could use the following instruction 

bits	

 31..26	

 25..21	

 20..16	

 15..0
	

 (6)	

 (5)	

 (5)	

 (16)
field
values 
(decimal)	

8	

 8	

 9	

 1
(binary)	

 001000	

 01000 	

 01001	

 0000000000000001

= 0010 0001 0000 1001 0000 0000 0000 0001 
 hexadecimal    =  0x21090001

5. The assembly-language way of writing the above would be

addi   $9, $8, 1

(By now you're used to the fact that the MIPS machine language has 
the order source then destination, while the assembly language puts 
the destination first!)

6. Actually, the addi instruction can be used for much more than just 
adding a value to a register.
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a) Suppose we wanted to SUBTRACT 1 - e.g. to do something like

i --

We can do this with addi, using a negative value.  (Assume i is in 
register 8):

addi $8, $8, -1

b) Suppose we wanted to LOAD 1 into a register - e.g. to do 
something like:

i = 1;

We can do this with addi, taking advantage of the fact that  register 
0 always contains 0.  (Assume i is in register 8)

addi $8, $0, 1

c) Other architectures might include several different instructions - 
e.g. add immediate, subtract immediate, and load immediate.  In 
keeping with the RISC philosophy, MIPS has just one that can be 
used to perform multiple jobs.

B. Other Immediate instructions - Handout.  Note that some treat the 16 bit 
constant as a signed number (and therefore sign extend to 32 bits) while 
others treat it as unsigned (and therefore append 16 leading 0's)

C. The load upper immediate Instruction

1. The I-Format instructions allocate 16 bits in the instruction to hold the 
immediate value to be used.  For those instructions which sign  extend 
the immediate value, we can represent any value between -32768  and 
+ 32767; for those which don't sign extend, any value between 0 and 
+ 65535.
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2. What do we do if we need a value outside this range?  The MIPS 
architecture includes a "load upper immediate" instruction (lui), that 
can be used to place a 16 bit value into the UPPER half of a 32 bit 
register.  When followed by an ordinary immediate instruction 
(typically ori to avoid sign extension), this can be used to put any 32 
bit value in a register.

# of bits	

 6	

 5	

 5	

 16 
field	

 op	

 0	

 rt	

 immediate value
contents	

 op =	

 (not	

 destination	

 value to load
	

 15 for lui	

 used)	

 reg	

 into upper 16
	

 	

 	

 	

 bits

3. Example:
C:     x = 0x12345678

MIPS:	 lui     $2,0x1234
	 ori     $2,$2,0x5678
	 sw      $2,x

V. MIPS Load and Store Instructions

A. An important architectural characteristic of RISCs is that all 
computational instructions operate on values contained in registers, and 
put their result in a register.

1. If we want to do computation on variables contained in memory, we 
need to first load them into registers, do the computation there,  and 
then (if necessary) store the result back into memory. (NOTE: in many 
ISA's, the term LOAD is used to mean "copy a value from  a location 
in memory into a register", and STORE is used to mean  "copy a value 
from a register into a location in memory" - but these  terms are not 
used with 100% consistency!  We will always use them in this way, 
though.

Ex: Assume that the variables x, y, and z are stored in memory, and we 
want to compute
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x = y + z

a) Would be translated by four MIPS instructions

Load y into some register (say $8) 
Load z into some other register (say $9)
Add the  registers, putting the result into some register (say re-use 
$8)
Store the result register into x

b) In assembly language

lw $8, --- address of y
lw $9, --- address of z
add $8, $8, $9
sw $8, --- address of x

2. There are major two reasons why RISCs use this approach (known as 
load store architecture).

a) It facilitates using a speed-improving technique known as 
PIPELINING (to be discussed in detail later.)

b) It allows an arithmetic instruction to be represented in a single  
word - note that it takes only 5 bits to specify a register, but could 
take as many as 32 to specify a memory address (so if we  could do 
x = y + z in one instruction, the instruction could need 96 bits just 
to specify the addresses of the three operands, plus more for the 
opcode! - which would amount to the same total length as four 
one-word instructions)

3. Obviously, when a value is stored in a register it is much easier to 
manipulate than when it is stored in memory.  For this reason, good 
compilers (and smart human programmers) try to take advantage  of 
the large number of available registers to store frequently-used 
variables in registers, rather than memory.
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a) For example, if a function contains a few local variables, these will 
most likely be kept in registers, and will never exist in memory - 
since they come into existence when the function is entered, and 
cease to exist when it terminates.

b) The C language includes a register directive which can be used, when 
declaring a variable, to tell the compiler that the variable should "live" 
in a register if at all possible.

Example:

register int i;

The compiler will try to set aside a register to hold the value of i, and 
will not put it in memory (unless it is unable to reserve a register.)

c) However, good compilers incorporate register allocation 
algorithms that accomplish the same result - but often more 
efficiently than humans can do with register "hints" - so most 
programmers leave it to the compiler to handle this issue.

d) Nonetheless, in any program having more than a very small number of 
variables, there will be a need to keep many variables in memory.

B. This leads us to a consideration of the basic load and store instructions.

1. As indicated in the example above, each load or store must specify the  
operation to be performed, a register to be loaded or stored, and a 
memory address.

2. An astute observer will note that this appears to need more than the 32 
bits available in an instruction word: some number of bits to specify the 
operation, 5 to specify the register, and 32 to  specify the memory 
address!
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3. To avoid this problem, MIPS uses a format for these instructions that 
specifies the address in terms of a BASE REGISTER and a 16 bit 
OFFSET.  The address is computed by adding the base register and 
the offset together.  The instruction format used is I-Format, similar to 
that of the immediate instructions we looked at earlier.

# of bits	

 6	

 5	

 5	

 16 
field	

 op	

 rs	

 rt	

 immediate value
contents	

 op =	

 source	

 transfer	

 offset
	

 35 for lw	

 (base)	

 (to load)	

 (16 bit two's
	

 43 for sw	

 reg	

 reg	

 complement
	

 	

 	

 	

 signed number)

4. Example: to load the contents of memory location 100 (decimal) into 
register 8, we could use the following instruction - taking advantage 
of the fact that $0 always contains zero:

bits	

 31..26	

 25..21	

 20..16	

 15..0
	

 (6)	

 (5)	

 (5)	

 (16)
field
values 
(decimal)	

35	

 0	

 8	

 100
(binary)	

 100011	

 00000	

 01000	

 0000000001100100

 = 1000 1100 0000 1000 0000 0000 0110 0100
hexadecimal    =  0x8c080064

5. The assembly-language way of writing the above would be

lw     $8, 100($0)

(Note, once again, that the order of the two register operands is the 
opposite of the machine-language order.  The load and  store instructions 
always specify the transfer register first, then the offset and base register.  
As usual, the assembler takes care of the order issue for us.)
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6. It might seem that the limitation to using a 16 bit offset would "cramp 
our style" in terms of accessing memory - i.e. a 16 bit offset can 
assume values in the range -32768 .. + 32767 if we regard the offset as 
a signed number.

a) If the address we wish to access is in low memory (up to 32767),  
we can specify it directly, using $0 as the base register.

b) It is common for programs to group variables into regions of 
memory, and to use a register to point to the beginning o that region.

(1)The fields of an object are allocated storage in successive 
locations of memory, and the "this" pointer of methods is set to 
point to the first such location.

Example: Suppose we have a declared as follows:

class SomeClass
{
	

 int x, y, z;

	

 void foo()
	

 {
	

     x = y + z;
	

 }
	

 ...

When foo() is executing, the following situation might exist in 
memory:

---------
|   x     | <--- this is address of start of
---------      this area
|   y     |
---------
|   z     |
---------
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Assuming that the value of this is placed in register 2, the code 
for the assignment statement in foo might translate as follows 
(actual code generated by g++ on our MIPS machine)
lw      $3, 4($2)
lw      $4, 8($2)
add     $3, $3, $4
sw      $3, 0($2)

(Since ints are stored as words (4 bytes long), y is at an offset of 
4 relative to this, and z is at an offset of 8.)

(2)Wherever possible, local variables of a function are kept in 
registers, rather than memory.  However, if variables need to be 
in memory, most compilers put the local variables of a  function 
into a single region of memory called the "stack frame"  of the 
function, and set register 29 (known by the special name  $fp) 
to point to it.

Example: a function might declare local variables as follows:

int a, b;

Assume, for the sake of discussion, that these need to be kept in 
memory.  Then the compiler might generate code that would 
create the following environment when the function is called:

---------
|   a     | <--- $fp holds address of beginning of
---------      this area
|   b     |
---------

Then we might load b into register 8 by the following code:

lw $8, 4($fp)

(Since ints are one word (4 bytes) long, b is at an offset  of 4 
from the beginning of the frame area.)  (Note: actual compilers 
store additional information in the frame, so if you looked at 
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actual compiled code the  offset would be more than 4, 
reflecting this.

(3)Many compilers put global variables into a single region of  
memory, and set register 28 (known by the special name $gp) to  
refer to point to it.  This allows global variables to be 
referenced by loads of the form:

lw register, some-offset($gp)

Note: The gnu compilers we have on our mips machine doesn't 
actually do this.

c) If all else fails, it is always possible to access a variable in memory 
by putting its address into a register, and then using an address of 
the form

 0(the register)

The assembler is capable of generating code to accomplish this, 
and uses a specific register that is set aside by software  convention 
for this: register 1 - known by the special name  at (assembler 
temporary.)

C.  In addition to accessing scalar variables, it is also possible to use load/
store to access elements of an array.  In this case, two approaches are 
possible:

1. If the element number is a constant, we can put the address of the 
array in a register and encode the element number in the offset.

Example: Given an array of integers x, load x[4] into register 9, 
assuming that register 8 holds the address of the array (the address of 
x[0])

ASK

 lw $9, 16($8)  # 16 because each element is 4 bytes long
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2. If the element number is a variable, we can compute the address of the 
desired element in a register and then use it with offset 0.

Example: Given an array of integers x, load x[i] into register 9,  
assuming that register 8 holds the address of the array, and register 10 
holds the value of i.  Use register 2 as a temporary.

ASK
add    $2, $10, $10    # $2 = 2 * i
add    $2, $2, $2      # $2 = 4 * i
add    $2, $2, $9      # $2 = address of x[i]
lw     $9, 0($2)

3. Note that in C/C++ and Java it is possible to use very similar 
statements to allocate storage for an array:

 C/C++   int * x = new int [10];
Java    int [] x = new int [10];

In both languages, x now is a variable that holds the ADDRESS of the 
first element of the array (x[0]), and access to an array element x[i] is 
obtained by adding the value of x and the value of i (times the size of 
an element). This is the way that the underlying hardware accesses 
arrays.

VI.MIPS Conditional Branch Instructions

A. The original version of the MIPS ISA defined two conditional branch 
instructions, which change the value in the program counter (and thus 
alter the flow of the program) if some condition is true.  (Later versions 
of the ISA defined additional such instructions, but we will limit  
ourselves to these two now).

1. beq - branch if the two registers are equal

2. bne - branch if the two registers are not equal

20



B. Both conditional branches are I format instructions, and look like this

# of bits	

 6	

 5	

 5	

 16  
field name	

 op	

 rs	

 rt	

 immediate value
contents	

 op =	

 first	

 second	

 offset
	

 4 for beq	

 reg to	

 reg to	

 (two's complement
	

 5 for bne	

 compare	

 compare	

 signed number)

C. Both conditional branches specify the destination of the branch as an 
offset relative to the value currently in the PC. 

1. The offset is multiplied by 4 (because all instruction addresses are a 
multiple of 4) and then added to the value currently in he pc, which is 
by this time the address of the NEXT instruction to be executed.

2. The offset can range from -32678 to +32767.  After multiplication by 
4, and adding to the address of the next instruction, this means that 
conditional branches can "reach" to an instruction in the range

addr of branch instruction - 131068 .. addr of branch instruction + 
131072

D. An important quirk: RISC computers (including MIPS) achieve 
impressive performance in part by overlapping the execution of several  
nstructions.

1. We will see, when we get to the implementation of MIPS, that the 
ISA was designed to allow the CPU to actually be working on 
different  parts of up to 5 successive instructions at the same time.

2. This poses an interesting problem in the case of conditional  branches: 
by the time that a decision has been made about whether or not to 
branch, the next instruction has already been fetched from memory.
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a) This doesn't pose a problem if the branch is not taken (the  condition 
is false).  But what if the condition is true?  In this case, we have 
fetched an instruction from memory that we don't want to execute.

b) We could just nullify the instruction - causing a "bubble" in the 
pipeline.  However, what many RISCs - including MIPS - do is to 
execute the instruction anyway.  Often, it is possible to fill this 
"branch slot" with a useful instruction that needs to be done regardless 
of whether or not we branched; but - absent this - it is standard 
practice to fill this slot with a "nop" (no-operation) instruction.

E. An example:

C/C++:   if (x == y)
	 x ++;

MIPS Assembly language - assume that x is in $4 and y in $5:

	

 bne	

 $4, $5, notequal
	

 nop
	

 addiu	

 $4, $4, 1 

Encoding of the branch instruction - what must the offset value be?

ASK

2 - address of nop + 2 = instruction following addiu

bits	

 31..26	

 25..21	

 20..16	

 15..0
	

 (6)	

 (5)	

 (5)	

 (16)
field
values
(decimal)	

 5	

 4	

 5	

 2
(binary)	

 000101	

00100	

 00101	

 0000000000000010

= 0001 0100 1000 0101 0000 0000 0000 0010 
hexadecimal    =  0x14850002
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VII.The Assembler

A. From the examples above, it should be clear that writing MIPS programs 
in machine language would be tedious and error prone, and that such 
programs could be very hard to modify.  This is true of any machine 
language.  Thus, from the earliest days of computing (the 1950's), when it 
is necessary to program at this level it has been common to write 
programs in a symbolic ASSEMBLY LANGUAGE and then use a 
special program called an ASSEMBLER to translate the symbolic 
program into actual binary machine code.

B. Today, of course, it is relatively uncommon to write programs in 
assembly language - though assembly language must still be used for 
writing some low-level components of system software such as operating 
systems.  Today, most assembly language is actually written by compilers 
- many compilers translate a HLL into assembly language, which then 
translates it into machine language - though some compilers compile 
directly to machine language.

1. Example: The C and C++ compilers on most Unix systems work this 
way.

E.g. if we compile a C++ program called foo.cc into an object 
program foo.o using the command|

g++ -c foo.cc 

We actually get an intermediate file called foo.s which is then 
translated to get foo.o

2. Normally, the assembly code is deleted after it is assembled. However, 
you can use the -S command line switch to stop the process after the 
assembly code is produced.
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DEMO:

Create the following simple program demo.cc:

int x, y, z;

void foo()
{
    x = y + z;
}

Compile using gcc -S demo.cc

Show demo.s.

Note that there is a _lot_ of overhead code associated with entering 
and exiting a function.

Note several lines that are immediately recognizable:

lw      $2,y
lw      $3,z
addu    $2,$2,$3
sw 

(Note: the addu instruction is very similar to the add instruction we 
have considered, except that it does not do any checking for overflow.  
We will consider how MIPS add handles overflow later; note that C 
programs simply ignore overflow!)

C. Historically, there has been a one-to-one correspondence between lines of 
assembly language code and machine instructions - e.g. the symbolic 
operation code corresponds directly to a machine language op code, and 
each line of assembly language produces exactly one machine  
instruction. 
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1. However, on RISCs this is not necessarily true - many RISC 
assemblers  will accept some constructs that assemble into more than 
one machine  instruction, and will synthesize certain RISC 
instructions from assembly language instructions that do not 
correspond directly to a machine instruction.

2. Example: in the above - the various load and store instructions may 
require more than one machine instruction. 

Ex: lw $2,y

If y's address is <= 32767, this can be encoded in a single I ormat lw 
instruction. However, if y's address is >= 32768, it may be necessary 
to synthesize a sequence of instructions that put the address of y into 
some temporary register (at), and then the instruction lw $2, 0(at).  
Thus, this one line could translate into as many  as three machine 
language instructions.

3. Example: The MIPS assemblers recognize certain pseudo-instructions 
that can be synthesized from other actual machine instructions.

a) Example: Suppose we want to copy the value in $2 into $3.  How 
can we do this using MIPS instructions we already know?

ASK

add $3, $2, $0

The MIPS assembler will accept the pseudo instruction:

move $3, $2 

which does not directly correspond to any MIPS machine 
instruction, and will synthesize an instruction like the above when 
it occurs.
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b) Example: Suppose we want to load a constant (say 42 = 2a hex) into 
register 2.  How can we do this using instructions we know?

ASK

ori $2, $0, 42

The MIPS assembler will accept the pseudo instruction:

li $2, 42

which does not directly correspond to any MIPS machine instruction, 
and will synthesize an instruction like the above when it occurs.

4. The pipelined implementation of MIPS requires that we cannot use a 
value loaded from memory on the very next instruction.  (This has to 
do with the fact that execution of successive instructions is  
overlapped in time.)  Sometimes the assembler needs to insert a "do  
nothing" instruction to ensure that values are valid.  (We will  discuss 
this later in the course, and will ignore it for now.)

D. You will get some experience working with the MIPS assembler in lab.

VIII.An Example

A. To put everything together, consider the compilation of the following C/C
++ assignment:

int answer;
int x, y; 
int a[10];
int i;

answer = (x + a[i]) - (y + 1);

B. MIPS assembly language (ignoring load delays).  Assume, for  simplicity, 
that all variables are in a low address region of memory, so they can be 
accessed by a 16-bit address.  (A more realistic situation would involve 32-
bit addresses, but that's not the point here.)
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lw $8, i        # $8 = value of i
sll $8, $8, 2   # $8 = 4*i
lw $8, a($8)    # $8 = word at address of a + 4 * i = a[i]
lw $9, x        # $9 = x
add $8, $9, $8  # $8 = x + a[i]
lw $9, y        # $9 = value of y
addi $9, $9, 1  # $9 = y + 1
sub $8, $8, $9  # $8 = (x + a[i]) - (y + 1)
sw $8, answer

C. MIPS machine language.  Assume, for simplicity, that answer is at 100, x 
at 104, y at 108, a at 112, and i at 152 - all decimal.

ASK class to develop

lw $8, i        # $8 = value of i

35	

 0	

 8	

 152	

 	

    (values in decimal)
100011	

 00000	

01000	

 0000000010011000  (values in binary)
1000  1100  0000  1000  0000  0000 1001 1000 = 0x8c080098

sll $8, $8, 2   # $8 = 4*i

0	

 0	

 8	

 8	

 2	

 0
000000	

 00000	

01000	

 01000	

 00010	

 000000
0000  0000  0000  1000  0100  0000  1000  0000 = 0x00084080

lw $8, a($8)    # $8 = word at address of a + 4 * i = a[i]

35	

 8	

 8	

 112
100011	

 01000	

01000	

 0000000001110000
1000  1101  0000  1000  0000  0000  0111  0000 = 0x8d080070

lw $9, x        # $9 = x

35	

 0	

 9	

 104 
100011	

 00000	

01001	

 0000000001101000
1000  1100  0000  1001  0000  0000  0110  1000 = 0x8c090068
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add $8, $9, $8  # $8 = x + a[i]

0	

 8	

 9	

 8	

 0	

 32
000000	

 01000	

01001	

 01000	

 00000	

 100000
0000  0001  0000  1001  0100  0000  0010  0000 = 0x01094020

lw $9, y        # $9 = value of y

35	

 0	

 9	

 108
100011	

 00000	

01001	

 0000000001101100
1000  1100  0000  1001  0000  0000  0110  1100 = 0x8c09006c

addi $9, $9, 1  # $9 = y + 1

8	

 9	

 9	

 1
001000	

 01001	

01001	

 0000000000000001
0010  0001  0010  1001  0000  0000  0000  0001 = 0x21290001

sub $8, $8, $9  # $8 = (x + a[i]) - (y + 1)

0	

 8	

 9	

 8	

 0	

 34
000000	

 01000	

01001	

 01000	

 00000	

 100010
0000  0001  0000  1001  0100  0000  0010  0010 = 0x01094022

sw $8, answer

43	

 0	

 8	

 100
101011	

 00000	

01000	

 0000000001100100
1010  1100  0000  1000  0000  0000  0110  0100 = 0xac080064
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